
NPSCS-92-018 0

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A261 367 DTIC
MAR 9 1993

Research Directions in Soft|are Anal-itk,
Synthesis and Certification

Luqi

Approved for public release: distribution is unlimited,

Prepared for:

Naval Postgraduate School
Monterey, California 93943

93-04964

/

NAVAl. POSTGRADUATE SCHOOL

Mionterey, California

Rear Admiral R.W. West, .Jr. HARRISON SlitIL

Superintendent Prou ot

This report was prepared with research funded by the Naval Research [Fnd, pro0 idcd hb the Naj al
Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

LUQI.j,\l Avs•,te Profc,-4,r

Reviewed by: Released b\:

THOMAWU PAUL MARTO
Associate Chairman for Dean of Research
Technical Research

REPORT DOCUMENTATION PAGE
ila EPORT SECURITY CLASSIFICATION Ib R'STR1VWV1 "" 7N

UNCLASSIFIED
23 SECURITY CLASSIFICATIOR AUTHORiTY 3 D~BTOiVLBF0 EC
2b DECLASSIF=CATIO9NIOWNGRADING SCHEDU'.' Approved for pubit: rc a •,c

distribution is unlImnicd
Z PEARFORMING RGANIZATION REPORT NUMBERkS)1 5 %MObRc k&F-ký'i_

NPSCS-92-0 18

6a NAME OF PERFORM1NG ORMAiZATI i' Or;F7 7117 "a Xi or7 7,• 77•C' C 71" !7 2',
Computer Science Dept.,I
Naval Postgraduate School CS

6c ADDRESS (City. State, and ZIP Code) 7b ADAE&S~ S l

Monterey, CA 93943

Ba NA•E OF FUNDINGSPOMNORING 8b O-FiCE SYMOM 1 P91.URE7T 1•'•T. -A"17,J; jr...7.
ORGANIZATION 'it app,1abie"
Naval Postgraduate School e

8c ADDRESS (Ca,, State, andZP Codeo 1 E 7, 7 r. . .

ELEMENT NO N 0,'O j" CE S>SC)Nh O
Monterey, CA 93943

11. TITLE (include Security Classitcarton)
Research Directions in Software Analysis. Synthesis and Certification

12 PERSONAL AUTHORMS)

Luqi
11TYEOREOT16TMCOEE 14 DA--EOFREPORT 1yea.Ac" Mox-! PAG cc'

I FROM TO __ 1 12 "9-L;r "

17 COSATI CODES 18 SUBJECT TERMS !Cont nue on reverse if 'eess•t•, a.d icJ,". t twOOKr,.n'br .-

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block nurmbe)
This paper presents a view of research directions relevant to producing reliable and uvcful software sy,-tem,. Ap-
propriate research goals are identified for achieving improvements in software quality via formalization and com-
puter aid for software analysis, synthesis, and certification tasks at all states of software development and evolu-
tion.

20. DISTRiBUTIONiAVA$LABIUrY OF ABSTRACT . 21 ABSTRACT SECURITY CLASSIFICATION
B UNCLASSIFIED/UNLIMITED [] SAME AS RPT, C] DTIC USERS UNCLASSIFIED

"22a, A'ME OF RESPOZNSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 122c OFFIQE SYMBOL
Luqi (408) 656-2735 . CSLq

z,7 4-t
Research Directions in Softare Analysis, Synthesis and Ceritication - -

Luq.

Computer ScictwC Del)rtrcnc
Na•jal P zgnr',oluate Schxl p ,

MontcrrC (CA)N 1'41

ABSTRACT

This paper prxcsents a view of rsc~xch d4u'tirus rclevant to chi•uwig retehk aWZ ucitul WA
software systcrm, Appropriatc rcscarLh goal, arc KkcntdiCd lot adiich.in p g w " III
-software uality via tor al.hzatiio atkd compuIt aid for %.lt.a1f ai•ods1t ,i \t'tAt&%,,s akf
certification tas0,, at all stages of sttwarc development arnd cvoluton

1. Introduction

Systematically producing and adapting reliable software that mcct the needs of
its clients is a dominant software engineering problem in the 19W's. Reltabhits of
software products is a concern particularly for systems whose malfunction nia, rcsuh
in lost lives, injuries, or financial losses. It is practically impossible to produc:e error-
free software systems that solve real (complex) problems by purely manual develop-
ment methods because human error rates are too high. Sound automatable methods for
software analysis, synthesis and certification are needed to bridge this gap For practi-
cal impact, these methods must fit together to cover the entire software development
and evolution process. Software evolution (sometimes called maintenance) is a major
concern in this context because errors are often introduced as a system is modified.
and evolution typically accounts for more than half of the effort of developing and
supporting a software system.

Reliability concern, indicate that we need automated assistance in all stages of
software development, but complete automation of softwpre development and evolution
is not feasible in the near future. Some realistic research goals in this situation
include:

(1) Formulating a consistent set of accurate mathematical models for a set of sub-
problems covering the software development process. This is needed to enable
integration of the methods and tools for solving problems related to different
aspects of software development.

(2) Developing and certifying the correctness of completely automated synthesis
methods for the tractable subproblems. In cases where this is possible. this
approach provides both reliability and productivity gains.

(3) Developing interactive synthesis methods that guarantee absence of errors for less
tractable subproblems. This approach combines the benefits of human creativity
with the accuracy provided by computer application of sound formal methods.

(4) Improving analysis and certification methods capable of detecting and diagnosing
errors for subproblems that cannot be covered by error prevention techniques. If
aspects of the process must remain manual, then automated assistance for locating
and removing errors and for certifying that no errors are left are needed for those

aspects.

Most of the past work on improving software reliability ha, folloted the last
approach. This direc~ion has enabled researchers to provide some useful to•tls without
waiting for full understanding of all of the problems involved. This direction is also
the least desirable one for the future because the search for errors is olten vcry Labol-
intensive and because it is difficult to predict how many iterations will be nceded tE"
eliminate all of the errors. Thus error detection work is most reasonable for those
aspects of software development for which error prevention techniques are not lfeasiblc

2. Assessing the State of the Art

Past approaches have considered isolated subproblemis o• the real sotswarc rchla.
bility problem, mostly at the code level.

Work on software testing has produced a few solid results in addition to rrianv
heuristics whose eftfctiveness is difficult to evaluate. Successful execution of test sets,
constructed by random sampling from a probability distribution can prov ide lower
bounds on the mean number of executions between failures if actual input ',alu,,
correspond to the given probability distribution 161. This kind of statistical rchlbdil,,
assurance is sufficient in cases where input distributions are predictable and nonm-ero
failure rates can be tolerated. Statistical assurances are not sufficient for critical appli-
cations where even one failure is unacceptable. Statistical reliability mea.sures can als.
be misleading if real input di-Ktributions are unstable or unknown, belcause there exist
input distributions with high failure rates for any deterministic program that is not
completely error-free.

For some specialized classes of programs, there exist methods for constructing a
finite set of test cases whose successful execution can establish correctness of the pro-
gram for all possible inputs [4,61. This is not possible in the general case: testing can
show the presence of software errors but it cannot certify their absence for uncon-
strained programs.

Work on program verification has sought to construct and mechanically check
mathematical proofs that given programs meet given specifications for all possih.7c
inputs. Methods for doing this exist, but this technology is not yet mature for practical
applications, particularly with respect to tool support and range of applicability of the
formal models. Weaknesses of current technology include the following.

(1) Proving that a program satisfies a given specification is useless ,,ithout some
assurance that the specification is valid, i.e. that it accurately represents the needs
of the users of the program. Validation of specifications is a major task and sys-
tematic methods for doing this are not well developed.

(2) It is impossible to prove that an incorrect program satisfies its specification. Past
studies indicate that it takes much more effort to construct code that fully meets a
specification than it docs to mathematically verify a correct program [5J.

(3) Current systems require considerable human assistance, and the mathematical
skills required to use these systems are beyond the abilities of many practicing
software developers.

2

3. Future Opportunities

More recently proposed approaches foc•us on error prevention rather than error
detection. Error prevention is possible both in cases where a software development
task can be completely automated, and in cases where an automated tool realizes all (if
the designer's decision's in constrained ways that do not allow the designer to make a
mistake, or that eliminate some kinds of mistakes. Some examples are meaning-
preserving software transformations, which prevent divergences between specifications
and the code [21. and syntax-directed editors, which prevent the creation of programs
that do not conform to the syntax of the programming languages-

It is commonly believed that error prevention is more difficult than error detec-
tion. but this is not always the case. For example, checking whether an equational
s;ccification for an abstract data type is consistent and complete is an undecidablc
problem. Nevertheless, there exists an error prevention technique that guarantees that
every specification that can be generated according to the rules is complete and con-
sistent. These rules are simple enough to be applied and checked by a text editor, and
they are sufficiently loose to accommodate the styles of specification that normally
occur in practice [1].

Software development deals with information of n'.any different kinds, at different
levels of abstraction. We summarize some of the types of software analysis, synthesis
and certification problems that should be investigated for several levels of software
representations in Fig. I.

3.1. Requirements Level

The requirements level establishes the goals for a proposed system ara formulates
models of the problem and the expected environment of the proposed system,

An important aspect of requirements analysis is achieving and maintaining con-
sistency as the analysts discover and record the requirements. A promising approach
to this problem is providing automated support for calculating and maintaining derived
properties and consequences of the requirements, and for tracing dependencies to
determine the causes of conflicts and inconsistencies. Better algorithms for this pro-
cess and primitives suitable for expressing and effectively maintaining dependencies in
software requirements should be investigated.

Another aspect of requirements analysis is modeling the environment of a pro-
posed system. Especially for embedded software systems, an accurate formal charac-
terization of the system to be controlled is essential for assessing the effectiveness of
the control software. The environment of such a system must often be simulated or
otherwise formally analyzed to enable safe and meaningful testing or analysis of the
embedded software system. Systematic methods for validating and testing the formal
models of the environment against the properties of the actual physical systems they
represent are needed. Both analytical and experimental methods should be explored to
establish that the formal environment models used in other software analysis and test-
ing activities are adequate representations of reality.

Many critical software systems are embedded systems, which means that the
software is part of a larger system. Thus an essential part of checking the adequacy of

3

Level Type of Analysis/Synthesis

Requirements consistency: truth maintenance
model validation: simulation and ptoof
subgoal verification: prototyping and proof

Specification adequacy: prototyping. operational scenarios
consistency: type and domain checking
safety: proofs
validation: paraphrasing, views, simplification

Design verification: proof of decomposition
liveness: deadlock and starvation checking
robustness: impact of degraded hardware
design for testing: control and observation
performance: complexity analysis
feasibility: satisfiability proofs

Coding synthesis: meaning-preserving transformations
performance: time and space analysis
liveness: proof of (clean) termination
real-time: analysis of scheduling methods
generic units: analysis of component families
error detection: complete test sets
error location: weakest preconditions

Evolution change impact: symbolic differences
restructuwing: meaning-preserving transformations
error prevention: change merging

Fig. 1 Types of Software Analysis and Testing

the requirements for the software is checking that any system meeting the requirements
will be sufficient to meet the requirements for the larger system in its intended opera-
tional context. Hard real-time constraints in an embedded system are often motivated
by the requirement to control the larger system to ensure it remains within a given
range of operating states. For example, the cycle rate of an auto-pilot must be
sufficiently high to ensure that the airplane remains within a given radius of its
planned position at all times. At the current time, lower level requirements are usually
formulated based on past experience and informal guidelines rather than on systematic
derivations or verification procedures with respect to the higher level requirements.

4

Both formal and experimental methods for systematically establii!.ing such properties
are needed. Required supporting technology for this process includes computer-aided
construction of prototypes [71.

3.2. Specification Level

The specification level is concerned with defining the interface of a propo),sed svs-
tern, both at the functional and the command representation levels.

The primary measure of the adequacy of a specified interface is whether it will
meet the needs of the user. This question is best addressed by experimental rather
than analytical techniques because it addresses the problem of checking the correspon-
dence between a formalized specification and the actual and informal needs of thc
users. One way of approaching this problem is via prototyping and operational
scenarios. Operational scenarios are common tasks in the customer's problem domain.
expressed in the user's terms. Such scenarios serve as test cases for the specilications.
whose purpose is to determine whether a proposed interface is adequate for carrying
out all of the tasks the users will have to perform. Such a test pas,,es if the facilities
provided by the proposed system interface can be combined to carry out the task,, in
the operational scenario, and provide a systematic means for exercising a prototype in
a demonstration to the users. Systematic methods for deriving sets of scenarios from a
requirements document, coverage criteria, and experimental evaluation of the effects of
such coverage criteria on change requests to the affected interfaces during system
maintenance should be investigated.

A related concern is validating a formal specification, to ensure that it correctly
captures the intentions of the users. While this is an informal process, it can be aided
by formalized and automatable procedures. Symbolic execution and operational
scenarios can be applied to this problem. Proof techniques can also be used in this
way [8], by obtaining a list of expected system properties and then proving that the
formal specification has those properties. Other relevant processes involved are para-
phrasing, projection, and simplification. Paraphrasing is the process of transforming a
formal specification into a form that a user can understand, while preserving its mean-
ing. Projection is the process of extracting the parts of a specification relevant to a
particular user or task, while hiding other details. Simplification is the process of
transforming a formal specification into a simpler form with an equivalent meaning.
These three processes can be combined to help users selectively review formal
specifications using representations they can understand. The research questions in this
area concern certifying the transformations to ensure they preserve the meaning of the
specification and experimentally evaluating the effectiveness of different representa-
tions for communicating with untrained users.

Consistency of a specification is another common concern, especially for large
and complex systems. Since consistency is a property of a formal document, it can be
addressed by analytical techniques. Some aspects of consistency checking that need
further development are type and domain consistency checking. Type checking at the
specification level is more difficult than the corresponding problem at the code level
because types can have subtypes defined by semantic considerations. Domain

5

checking is the process of ensuring that partial functions or predicates are used only
within their domain of definition, and that partially defined generic units are instan-
tiated only with actual parameters in their respective domains of definition Logical
inference capabilities are necessary for both of these kinds of specification analysis,

Another concern with formal specifications is checking safety properti•s. For
example, past research projecLs have been concerned with whether a proposed operat-
ing systems kernel satisfied certain security properties, such as the impossibility of
transmitting classified information from a process with a high security classification to
an unauthorized process. The goals of safety analysis procedures are to identify ca-s
where the specifications allow behaviors violating the safety properties, or to certify
that no such cases exist. Systematic procedures for this process are needed becausc
the connection between a formal specification and a safety property can be quite
indirect and can require extensive reasoning and analysis to establish.

3.3. Design Level

The design level is concerned with the decomposition of a problem into a
hierarchical structure of independent modules. Such a decomposition consists of' inter-
connection information and formal specifications for the components

The primary reliability property of a decomposition structure is whether it will
correctly realize the specification at the next higher level. This problem is subject to
mathematical proof techniques. The problem is easier to solve than the general proof
of correctness problem at the code level because the module interconnection language
is can be considerably simpler than a programming language. Most of the analysis can
be carried out at the specification level, since the problem is to check whether a given
combination of specified components will satisfy the required properties of the compo-
site. Research questions in this area involve the best (hoice of interconnection primi-
tives to support effective and efficient inference proceuires, and formal characteriza-
tions of interfaces and resource models sufficient to ensure correctness of decomposi-
tions in the presence of distributed processing and hard real-time constraints.

Another type of properly of interest for parallel and distributed systems is live-
ness. Techniques for checking for potential deadlock or starvation conditions in such a
design are desired. Deadlock detection appears to be decidable for asynchronous
models and undecidable for synchronous ones. Some research problems in this area
include developing solutions to the problem in the error prevention style, and develop-
ing better symbolic techniques for deadlock detection and diagnosis. The problem
with past finite-state techniques for deadlock detection is that practical applications
often have state spaces that are much to large for enumeration techniques to be applied
in practice. Formal approaches that can avoid state enumeration via induction and log-
ical reasoning should be developed further.

An important class of analysis involves the effects of degraded hardware on the
properties of a design, relative to a mapping of software components to hardware com-
ponents. This kind of analysis is essential for achieving reliable fault tolerant systems,
especially those with distributed implementations. In addition to certifying that pro-
posed configurations realize given degrees of fault tolerance, automatic derivation of

6

the implied constraints on allocation of software functions to hardware units is desir-
able.

Evaluation of a design for time and space performance is another kind of
software analysis that has potential importance. Automated support for classical com-
plexity analysis is needed, along with estimates for the ranges of' input sites and con-
stant factors determined by classes of algorithms.

A final consideration is satisliability. The satistiability of a specification can be
established if an implementation can be produced and certified to be correct. How-
ever, it would be useful to determine whether it is possible to satisfy a given
specification before the implementation is attempted, and in cases where it is not, to
characterize the set of inputs for which the specification is impossiblc to mcc.
Analytical techniques for constructing weakest infeasible preconditions characterizing
this set of inputs should be explored. Since it is possible to derive programs from
sufficiently constructive proofs of the satisfiability of a specification. further research
along these lines has good potential for producing a practical impact.

3.4. Code Level

The best way to achieve quality is to systematically prevent errors. Automatable
methods for synthesis of efficient code from formal specifications via meaning-
preserving transformations should be investigated. Of particular interest are systems
that can choose transformations without explicit human guidance, or with guidance
from general declarative advice that can be formulated without explicit reference to the
details of the current state of the derivation and does not require explicit human
interaction during the derivation process.

Accurate performance analysis requires detailed code and knowledge about pro-
perties of a particular compiler and target machine. Generic table driven methods for
performing such analysis, and for relating design-level properties of abstract algorithms
to detailed properties of actual machine-level implementations and compiler optimiza-
tions is needed to accurately certify correctness of programs with hard real-time and
real-space constraints. Research problems in this area include formal modeling of
implementation-specific properties and constraints in ways that can be combined with
implementation-independent analyses of abstract programs.

Another problem is certification of clean termination. This problem gains new
dimensions in parallel and distributed systems, where termination can be influenced by
scheduling properties and hardware failures. Research questions include models and
techniques for analyzing programs in these domains.

Analysis of real-time systems includes analysis of scheduling methods to deter-
mine whether a proposed scheduling discipline will meet specified deadlines under all
possible operating conditions. Research questions in this area have flexible scheduling
methods, the effects of shared resources, overload resolution policies, and remote com-
munications as major concerns.

The problem of certifying generic code units or families of related programs gen-
erated by meta-programming schemes is a major concern in systems for managing
reusable software. A software component is most effectively re-used if it is flexible

7

and can be adapted to many needs. Such a component often corresponds to a family
of related program units with an unbounded numbr of elements. The problems of
testing and analyzing the reliability of such program families is an important research
question.

Classical testing approaches need more foundational work on the construction of
complete test sets. A complete test set is a set of test cases which is guaranteed to
detect any error in a particular well-defined class of errors. More work is needed on
the construction of finite complete test sets, an on characterizing the set of faults
whose absence is guaranteed by successful execution of the test set. Such work should
include automated techniques for constructing the required test oracles from the formal
specifications of the code to be tested. A weakness of statistical appro2ches to testing
is the size of the test set required for certifying that systems have low failure frequen-
cies, which makes manual examination of test results impractical. To apply these tech-
niques in practice, we need automated methods for deciding whether or not the outputs
produced by a test case conform to a specification.

An aspect of code analysis of great practical importance is error location. One
approach to this problem is to derive weakest preconditions for suspected pieces of
code, to characterize the space of inputs for which the code fails. This and other
approaches should be refined and evaluated to determine their practical utility.

3.5. Evolution Aspects

Software maintenance is acknowledged to be more difficult and error prone than
the initial development. An important kind of software analysis for this part of
software development is characterization of the effects of a change to a software sys-
tem. Symbolic representations for the parts of the input space and the output space of
a program affected by a given change to the code are useful for testing and evaluating
a modification for conformance with the expected results. Computer-aided
identification of the parts of a specification affected by a given requirements change,
the parts of a design affected by a given specification change, and the parts of the code
affected by a given design change are also important areas for research.

When changing a softwart, system, it is often necessary to reverse an earlier
design decision while preserving the later ones, and to combine the effects of several
changes that were developed independently. Both of these problems can be addressed
by change-merging techniques [3] Automated construction ind application of mono-
tonic transformations that can modify specifications and programs in response to prob-
lems with the current behavior of a system is also an important research problem.

4. Conclusion

Advances in software analysis, synthesis and certification are essential for realiz-
ing trusted software systems. Work in this area should be expanded beyond the tradi-
tional domains of testing code in a programming language and proving that programs
satisfy formal specifications, to include software products at al' -ages of development
from requirements analysis to system evolution. Some key areas for future research
are

8

(1) Methods for validating requirements and specifications, such as prototyping and
techniques for testing prototypes and specifications relative to user perceptions,

(2) Methods for constructing programs that guarantee correctness with respect to for-

mal specifications, such as program synthesis by meaning-preserving transforma-

tions and certification of application-specific program generation schemes.

(3) Approaches for making formal methods easier to use, reducing the amount of

manual effort required, and for reducing the amount of training and mathematical
skill required for practitioners to apply these methods by designing software tools

that hide theoretical complexities and provide simple interfaces.

(4) Methods relevant to software evolution, such as change merging, mon ,.nic
transformations for modifying Specifications and programs, and incremental ver-
sions of conventional software analysis, synthesis, and certification methods.

(5) Software analysis techniques addressing properties of parallel, distributed, real-
time, and knowledge-based systems should be explored as well as those for
sequential systems.

(6) Further work on program testing is needed, t expand the domains in which firm

conclusions about satisfying specifications can be drawn from finite sets of test
cases constructed by definite and effective methods, and to systematically check

assumptions about the operating environment on which the design of a software

system depends.

1. S. Antoy, P. Forcheri and M. Molfino, "Specification-based Code Generation",
in Proc. 23rd Hawaii International Conference on System Sciences, IEEE
Computer Society, Jan. 1990, 165-173.

2. F. Bauer, B. Moller, H. Partsch and P. Pepper, "Formal Program Construction
by Transformations - Computer-Aided, Intuition-Guided Programming", IEEE
Trans. on Software Eng. 15, 2 (Feb. 1989), 165-180.

3. V. Berzins, "Software Merge: Models and Methods", International Journal on
Systems Integration 1, 2 (Aug. 1991), 121-141.

4. J. Bicevskis, J. Borozovs, U. Straujums, A. Zarins and E. Miller, Jr., "SMOTL -
A System to Construct Samples for Data Processing Program Debugging", IEEE
Trans. on Software Eng. SE-5, 1 (Jan. 1979), 60-66.

5. D. Good, "Mechanical Proofs about Computer Programs", Technical Report
#41, Institute for Computing Science, University of Texas at Austin, Mar. 1981.

6. W. Howden, Functional Program Testing and Analysis, McGraw-Hill, New
York, 1987.

7. Luqi, "Software Evolution via Rapid Prototyping", IEEE Computer 22, 5 (May
1989), 13-25.

8. A. Mili, W. Xiao-Yang and Y. Qing, "Specification Methodology: An Integrated
Relational Approach", Software Practice and Expereience 16, 11 (Nov. 1986),
1003-1030.

9

INITIAl Di UIHlHTRIBION l.l• I

Defense Technical Information Cent'r
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 52
Nava Postgraduate S; h(x,l
Mcrterey, CA 93943-51N)

Office of Research Admimstration
Code 08
Naval Postgraduate School
Monterey, CA 93943-5100

Chief of Naval Research
8(X) N. Quincy Street
Arlington, VA 22302-020K

Center for Naval Analysis
4401 Ford Avenue
Alexart:ia, VA 22302-026S

Chief of Naval Operations
Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey. CA 93943-5100

Dr. Luqi
Computer Science Department, Code CSLq
Naval Postgraduate School

Monterey, CA 93943-5100 10

Dr. Thomas Wu
Computer Science Department, Code CSWq
Naval Postgraduate School
Monterey, CA 93943-5100

10

